
Rewriting	your	function	using	
map	and	foldr

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	5.5

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• In	this	lesson,	we	will	learn	to	recognize	when	
your	function	is	suitable	for	replacement	by	
one	of	the	built-in	HOFs	(map,	filter,	foldr,	
etc.)

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– Use	the	built-in	HOFs	for	processing	lists	found	in	
ISL.

– Recognize	the	HOF	that's	appropriate	for	your	
function.

– Follow	a	recipe	for	converting	your	use	of	a	
template	into	a	use	of	a	HOF.

– Follow	a	recipe	for	defining	a	new	function	using		
a	HOF.

3

Introduction

• There	are	many	ways	to	generalize	functions	
built	using	the	ListOfX template.		The	textbook	
refers	to	these	as	the	list	abstractions.	 	

• We	prefer	the	word	generalization,	 since	
abstraction	can	mean	many	things.

• Chapter	18	of	HtDP/2e	gives	a	helpful	list	of	
the	built-in	list	abstractions	in	ISL.		

• We've	seen	most	of	these	before,	but	let's	
look	at	them	all	together.

4

;; map : (X -> Y) ListOfX -> ListOfY
;; construct a list by applying f to each item of the given
;; list.
;; that is, (map f (list x_1 ... x_n))
;; = (list (f x_1) ... (f x_n))
(define (map f alox) ...)

;; foldr : (X Y -> Y) Y ListOfX -> Y
;; apply f on the elements of the given list from right to
;; left, starting with base.
;; (foldr f base (list x_1 ... x_n))
;; = (f x_1 ... (f x_n base))
(define (foldr f base alox) ...)

Pre-built	HOFs	for	lists	(1)
(Chapter	18)

5

The	book	doesn't	use	the	
GIVEN/RETURNS	form	for	
purpose	statements.		But	
you	still	need	to	do	so	for	
the	functions	you	write!

;; build-list : NonNegInt (NonNegInt -> X) -> ListOfX
;; construct (list (f 0) ... (f (- n 1)))
(define (build-list n f) ...)

;; filter : (X -> Boolean) ListOfX -> ListOfX
;; construct the list from all items on alox for which p
;; holds
(define (filter p alox) ...)

Pre-built	HOFs	for	lists	(2)
(Chapter	18)

6

;; andmap : (X -> Boolean) ListOfX -> Boolean
;; determine whether p holds for every item on alox
;; that is, (andmap p (list x_1 ... x_n))
;; = (and (p x_1) ... (p x_n))
(define (andmap p alox) ...)

;; ormap : (X -> Boolean) ListOfX -> Boolean
;; determine whether p holds for at least one item on alox
;; that is, (ormap p (list x_1 ... x_n))
;; = (or (p x_1) ... (p x_n))
(define (ormap p alox) ...)

Pre-built	HOFs	for	lists	(3)
(Chapter	18)

7

Which	of	these	should	I	use?

• We	can	write	a	recipe	to	help	you	decide	
which	of	these	functions	to	use,	if	any.

8

Recipe	for	Rewriting your	function	to	use the	Pre-Built
HOFs	for	lists

1. Start	with	your	function	definition,	written	using	the	
template	for	some	list	data.
2.	Determine	whether the	function	is	a	candidate	for	
using	one	of	the	built-in	HOFs
3.	Determine	which	built-in	HOF	is	appropriate
4.	Rewrite	your	function	using	the	built-in abstraction.		
The	new	strategy	is	"Use	HOF	..."
5.	Comment	out	the	old	definition.		Do	not	change	the	
contract,	purpose	statement,	examples,	or	tests.

Recipe	for	Rewriting	Your	Function	to	
Use	the	Pre-Built	HOFs	for	lists

9

A	candidate	for	map or	foldr looks	like	
this:

(define (f lst a b c)
(cond
[(empty? lst) ...]
[else (...

(first lst)
(f (rest lst) a b c))]))

10

takes	a	list	and	
some	other	
arguments

recurs	on	the	rest	of	the	
list;	other	arguments	

don't	 change

Here	are	the	things	that	make	your	
use	of	a	template	a	candidate	for	
one	of	the	list	abstractions.

A	candidate	for	map looks	like	this:

;; f : ListOfX ... -> ListOfY
(define (f lst a b c)
(cond
[(empty? lst) empty]
[else (cons

(... (first lst) a b c)
(f (rest lst) a b c))]))

11

empty here

cons here

Function	 takes	a	list	
and	some	other	
arguments,	and		
returns	a	list

A	candidate	for	andmap looks	like	this:

;; f : ListOfX ... -> Bool
(define (f lst a b c)
(cond
[(empty? lst) true]
[else (and

(... (first lst) a b c)
(f (rest lst) a b c))]))

12

true here

and here

Function	 takes	a	list	
and	some	other	
arguments,	and		
returns	a	boolean

A	candidate	for	ormap looks	like	this:

;; f : ListOfX ... -> Bool
(define (f lst a b c)
(cond
[(empty? lst) false]
[else (or

(... (first lst) a b c)
(f (rest lst) a b c))]))

13

False here

or here

Function	 takes	a	list	
and	some	other	
arguments,	and		
returns	a	boolean

A	candidate	for	foldr looks	like	this:

;; f : ListOfX ... -> ??
(define (f lst a b c)
(cond
[(empty? lst) ...]
[else (...

(first lst)
(f (rest lst) a b c))]))

14

and	none	of	the	above	
patterns	(map,	andmap,	

ormap)	apply.	

A	candidate	for	filter looks	like	this:

;; f : ListOfX ... -> ListOfX
(define (f lst a b c)
(cond
[(empty? lst) empty]
[else (if (... (first lst) a b c)

(cons
(first lst)
(f (rest lst) a b c))

(f (rest lst) a b c))]))

15

recurs	on	the	rest	of	the	
list;	other	arguments	

don't	 change

makes	a	decision	
based	on	the	first	
element	of	the	list

if	test	is	true,	includes	
the	first	element	in	

the	answer

Function	 takes	a	list	and	
some	other	arguments,	
and		returns	a	list	of	the	

same	type.

Patterns	for	using	higher-order	
functions

• We've	looked	at	which	uses	of	the	list	
template	might	be	rewritten	using	higher-
order	functions.

• Next	we'll	look	at	what	the	function	will	look	
like	when	it's	rewritten.

• The	exact	form	of	the	rewritten	definition	will	
be	different	for	each	of	the	abstraction	
functions	(map,	filter,	foldr,	etc.).		Lets	look	at	
each	of	those.

16

General	pattern	for	using	a	HOF	on	
lists

;; list-fn : ListOfX -> ??
(define (list-fn lst)
(local (; contract for combiner

(define (combiner ...) ...))
(abstraction combiner ... lst)))

17

Choose	your	abstraction	from	the	ones	in	Chapter	18.

The	contract	for	your	combiner	depends	on	which	
abstraction	you	choose.

The	arguments	 for		the	different	abstractions	are	different.
If	this	were	foldr,	 the	base	would	go	here.

Pattern	for	using	an	HOF:	map

;; list-fn : ListOfX -> ListOfY
(define (list-fn lst)
(local (; operator : X -> Y

; purpose statement for operator
(define (operator x) ...))

(map operator lst)))

18

Here	is	the	pattern	for	a	use	of	map.		It	is	necessary	to	fill	in	the	
right	data	definitions	for	X and	Y.	It	isn’t	necessary	to	make	the	
operator	a	local	function	or	lambda,	but	if	you	do,	you	must	
write	a	contract	and	purpose	statement	(also	examples	if	they	
are	needed	to	clarify	purpose).

Or	you	could	use	lambda

;; list-fn : ListOfX -> ListOfY
(define (list-fn lst)
(map

; X -> Y
; purpose statement for operator
(lambda (x) ...))
lst)))

19

Example
;; STRATEGY: Use template for ListOfNumber on lon
(define (add-x-to-each x lon)

(cond
[(empty? lon) empty]
[(else (cons

(+ x (first lon))
(add1-to-each x (rest lon))))]))

;; strategy: Use HOF map on lon.
(define (add-x-to-each x lon)

(map
;; Number -> Number
(lambda (n) (+ x n))
lon))

20

Here's	an	original	function,	
and		what	we	get	after	we've	
converted	it	to	use	map.		
Here	I've	used	lambda,	but	
that	isn't	necessary.

This	one	is	so	simple	you	don't	need	a	purpose	
statement	for	the	lambda.

Pattern	for	using	a	HOF:	filter

;; list-fn : ListOfX -> ListOfX
(define (list-fn lst)
(local (; X -> Boolean

; purpose statement for test
(define (test x) ...))

(filter test lst)))

21

Similarly,	here	is	the	pattern	for	a	use	
of	filter.

Or	you	could	use	lambda

;; list-fn : ListOfX -> ListOfX
(define (list-fn lst)
(filter

; X -> Boolean
; purpose statement for the test
(lambda (x) ...)
lst))

22

Pattern	for	using	an	HOF:	
andmap/ormap

;; list-fn : ListOfX -> Boolean
(define (list-fn lst)
(local (; X -> Boolean

; purpose statement for test
(define (test x) ...))

(andmap/ormap test lst)))

23

Either	andmap or	ormap.

Using		an	HOF	with	lambda :	
andmap/ormap

;; list-fn : ListOfX -> Boolean
(define (list-fn lst)
(andmap/ormap

; X -> Boolean
; purpose statement for the test
(lambda (x) ...)
lst))

24

Pattern	for	using	an	HOF:	foldr

;; list-fn : ListOfX -> Y
(define (list-fn lst)
(local (; X Y -> Y

; purpose statement for combiner
(define (combiner x y) ...))

(foldr combiner base-val lst)))

25

Finally,	here	is	the	pattern	for	a	use	of	foldr.

Pattern	for	using	an	HOF	with	lambda:	
foldr

;; list-fn : ListOf<X> -> Y
(define (list-fn lst)
(foldr

; X Y -> Y
; purpose statement for combiner
(lambda (first-elt ans-for-rest) ...)
base-val
lst))

26

These	variable	names	remind	you	where	
the	values	come	from.

Recognizing	Opportunities	for	using	
HOF's

• Once	you	get	the	idea,	you	can	anticipate	when	
you	can	use	an	HOF,	and	apply	it	directly.

• If	your	function	treats	all	members	of	the	list	in	
the	same	way,	then	your	function	is	a	candidate.
– remove-evens								--Yes,	all	elements	are	included	if	
they	are	even.

– count-trues							 --Yes,	all	elements	are	counted	if	
they	are	true.

– remove-first-even		--No,	elements	after	the	first	even	
are	treated	differently.

27

What’s	the	strategy?

• From	now	on,	you	can	use	HOFs	anywhere.		
• So	you	could	write

(filter some-fcn (robot-history r))

• For	your	strategy	you	could	write
– Use	template	for	Robot	on	r			OR
– Use	HOF	filter	on	(robot-history	r)

• Either	would	be	OK.		Use	whichever	one	best	
describes	how	your	whole	function	works.

28

Which	HOF	should	I	use?

• Key:	look	at	the	contracts
• Here's	a	recipe,	followed	by	a	video	
demonstration

29

Recipe	for	Using	a	Higher-Order	
Function	to	process	a	list

1.	Write	the	contract, purpose	statement,	and	examples	
for	your	function.		Does	your	function	process	a	list?		
Does	it	treat	all	members	of	the	list	in more	or	less	the	
same	way?
2.	Choose	a	function	from	Chapter	18	whose	contract	
matches	yours.		What	choices	for	X,	Y,	etc.	match	your	
contract?
3.	Create	a	copy	of	the	pattern	for	the	function.	What is	
the	contract	for	the	combiner?		What	is	its	purpose?
4.		Define	the	combiner	function.
5.		Test	as	usual.

30

Video	Demonstration:	Using	an	HOF	
(part	1)

31
Remember:	We	don't	write	ListOf<X>	any	more;	we	

write	ListOfX instead.		

https://www.youtube.com/watch?v=WzBt8637-uM&feature=youtu.be

Video	Demonstration:	Using	an	HOF	
(part	2)

32

https://www.youtube.com/watch?v=g0X6OKvUB40&feature=youtu.be

Summary

• You	should	now	be	able	to:
– Use	pre-built	HOFs	for	processing	lists	found	in	
ISL.

– Recognize	the	pre-built	HOF	that's	appropriate	for	
your	function.

– Follow	the	recipe	for	converting	your	use	of	a	
template	into	a	use	of	an	HOF

33

Next	Steps

• Study	05-4-sets.rkt	in	the	Examples	folder.
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board.

• Do	Guided	Practice	5.5
• Do	Problem	Set	5.

34

